Lesson 1 For Book 2

Acid and Alkalis

Actually, there are many things existing in our daily life which are an acid or an alkaline/base. For example, vitamin C is a natural organic acid, which can be used as an anti-oxidant (抗____化劑)
While caustic soda (NaOH) is used in drain cleaners.

What is an acid?

- An acid is a speiecs which can **produce hydrated hydrogen ions**, H_3O^+ , i.e. $H_2O \rightarrow H^+$, when the species is dissolved in _____. There are two types of acid, they are ino______ acids and o______ acids.
- "Basicity" of an acid describes the maxium number of hydrogen ions (protons) that one acid molecule can produce in water.
 - 1. monobasic --- e.g. HCl , HCl + $H_2O \rightarrow H_3O^+ + _$ --- only one H_3O^+
 - 2. dibasic --- e.g. H_2SO_4 , $H_2SO_4 + \underline{H_2O} \rightarrow \underline{H_3O^+ + SO_4^{2-} --- two}$
 - 3. tribasic --- e.g. H_3PO_4 , H_3PO_4 + $H_2O \rightarrow H_3O^+ + PO_4^{3-} ---$ three_____
- The above equations are describing the **dissociation of strong acid**, that is, the **irreversible** dissolution of acid in water to produce h_____ proton(s).

Further Thinking

Please order the following inorganic acid in increasing strength by inspection only. HNO_3 , H_2CO_3 , H_3PO_4

 \rightarrow In fact, basicity of an acid is n_____ related to its strength !!!

Some facts about acids

- 1. Acids have a _____ taste. 2. Acids can change _____litmus paper _____.
- 3. Acids can conduct *electricity*. (Why? As they can produce mobile p_____ ions.)

 \rightarrow Acids are **electrolytes**, which means a source of *mobile ions*.

- 4. Acids can react with *metals* to give out s__+ h___ gas \rightarrow A___ B___
- e.g. Please write down the reaction between Calcium and HNO₃.
- 5. Acids can react with *metal oxides and hydroxides* to give out s_____ and **water**.
- \rightarrow It is a typical type of *neutralization*, an _____thermic reaction.

e.g Please write down the reaction between Lithium oxide and Sulphuric acid.

 \rightarrow Be careful of the *mole ratio* =

6. Acids can react with metal carbonates and hydrogencarbonates to give out

salt + water + _____ gas , which can turn l____ water milky.

 \rightarrow It is n____ a neutralization process as _____ gas is also produced.

e.g. Please write down the reaction between sodium carbonate and hydrochloric acid.

Exercise 1 Successive ionization of an acid It is known that an polybasic acid will give out its protons one by one. a) Please write down the successive ionization equations of the organic acid, **oxalic acid**. (Hint = What is the basicity of it? ____.) HÓ ЮH \rightarrow \rightarrow b) If oxalic acid and sulphuric acid are allowed to react with **lime water**, which contains C_____ hydroxides, which acid will react more vigorously? \rightarrow Remember that o_____ acids are relatively weaker than inorganic acids. What is an alkalis/bases ? A base is a species which will accept a proton from an a_____ to produce a _____ **anion**, when the species is dissolved in water. There are two types of bases, they are ino_____bases and o_____bases. Similar to acids, if a base can dissolve in water irr_____ to give OH ions, the dissolution process is called **dissocation**. If a base (which is not very soluble in water) can dissolve in water **reversibly** to give OH⁻ ions, the process is called i . e.g $NH_3(aq) + H_2O(1) = NH_4^+(aq) + (aq)$ \rightarrow Remember that all **ions** should be in the state (). *Further Thinking* Do you think that there is an organic base? Do you think that there is an polybasic base? Here is an example, with **basic sites**. Some facts about bases 2) Bases have a slippery feel. 1) Bases usually taste bitter. Bases can turn ____ litmus paper ____. 3) Bases are electrolytes, as they dissolve in _____to give mobile ions e.g. _____ 4) Bases can react with **acids** to give salt and water \rightarrow *Neutralization* 5)

6) Bases can react with **non-metal oxides** (e.g. $CO_2(g)$) \rightarrow *Acid base reaction*

 \rightarrow Do you know that non-metal oxides e.g. CO₂ or SO₂ or SO₃ is acidic. CO₂ is one of the causes of acidic rain as CO₂ can dissolve in water/river to give acid.

7) Bases can react with **ammonium compounds** to give salt + water +

gas, which can turn red litmus paper _____.

e.g. $(\mathbf{NH}_4)_2 CO_3(aq) + 2 \operatorname{NaOH}(aq) \rightarrow \operatorname{Na}_2 CO_3(s) + 2H_2O(l) + 2\mathbf{NH}_3(g)$

New concept ---Why ammonia is basic but its ammounium salt is acidic? Remember the following **exchange of roles** --- there must be *a pair of acid and base*. $NH_3(aq) + H_2O(1)$ \longrightarrow $NH_4^+(aq) + OH^-(aq)$ Base Acid Acid Base

8) Bases can react with metal salts (which provide metal i___) to give soluble or

insoluble metal hydroxides and another metal salt. → Precipitation pro
--

Colour of	Ionic equation of common	Colour of
Metal-ions	precipitations	precipitates
containing		
solution		
Al ³⁺ pale green	$Al^{3+}(aq) + 3OH^{-}(aq) \rightarrow Al(OH)_{3}(s)$	white
Ag ⁺ colourless	$2Ag^{+}(aq)+2OH^{-}(aq) \rightarrow Ag_2O(s) + H_2O$	Dark brown
Cu ²⁺ blue	$Cu^{2+}(aq) + 2OH^{-}(aq) \rightarrow Cu(OH)_{2}(s)$	Deep blue
Fe ²⁺ green	$Fe^{2+}(aq) + 2OH(aq) \rightarrow Fe(OH)_2(s)$	Dark green
Fe ³⁺ yellow	$Fe^{3+}(aq) + 3OH^{-}(aq) \rightarrow Fe(OH)_{3}(s)$	Reddish brown
Mg ²⁺ colourless	$Mg^{2+}(aq) + 2OH^{-}(aq) \rightarrow Mg(OH)_{2}(s)$	White
Ni ²⁺ green	$Ni^{2+}(aq) + 2OH^{-}(aq) \rightarrow Ni(OH)_{2}(s)$	Green
Pb ²⁺ colourless	$Pb^{2+}(aq) + 2OH(aq) \rightarrow Pb(OH)_2(s)$	White
Zn ²⁺ colourless	$Zn^{2+}(aq) + 2OH^{-}(aq) \rightarrow Zn(OH)_{2}(s)$	White

Extra Information

```
1) When excess NaOH(aq) is added on the solution with Al(OH)_3(s), Pb(OH)_2(s)
```

and $Zn(OH)_2(s)$ precipitates respectively, what will happen?

- \rightarrow the ppt. will dissolve to form a _____ solution.
- 2) When excess NH₃(aq) is added on $Zn(OH)_2(s)$ and $Ag_2O(s)$, what will happen?
- \rightarrow the ppt. will dissolve to form a _____ solution.
- *3) When excess $NH_3(aq)$ is added on $Cu(OH)_2(s)$, what will happen?
- \rightarrow the ppt. will dissolve to form a deep _____ solution.

Thr	ee important inorganic acids
1.	Concentrated/ diluted hydrochloric acid ()
	\rightarrow Corrosive, volatile which gives out HCl (g, toxic w fume)
2.	Concentrated/ diluted nitric acid ()
	\rightarrow volatile and most specially, it has oxidizing power
	\rightarrow must be stored in brown bottle so as to prevent light d
	i.e. $4HNO_3(aq) \rightarrow 2H_2O(l) + 4NO_2(brown gas) + O_2(g)$
3.	* Concentrated/ diluted sulphuric acid ()
	\rightarrow highly corrosive as it is dehydrating and oxidizing
e.g l	H_2SO_4 can remove water from sugar and other carbohydrates,
to pi	roduce carbon, heat, steam,
(CH	f_2O_n +Sulfuric acid→C(black graphitic foam) +steam+Sulfuric acid/water mixture
<u>Но</u> и	<u>v can we produce H₂SO₄? Contact Process</u>
	In the first step, sulphur is burned to produce sulphur dioxide.
	$S(s) + O_2(g) \rightarrow SO_2(g)$
	This is then oxidized to sulphur trioxide using oxygen in the presence of a
vana	adium(V) oxide catalyst.
	$2 \text{ SO}_2(g) + O_2(g) \rightarrow 2 \text{ SO}_3(g) \text{ (in presence of } V_2O_5)$
	The sulfur trioxide is absorbed into 97–98% H_2SO_4 to form oleum ($H_2S_2O_7$).
The	oleum is then diluted with water to form two moles of concentrated sulfuric acid.
	$\mathrm{H}_{2}\mathrm{SO}_{4}\left(l\right) + \mathrm{SO}_{3} \rightarrow \mathrm{H}_{2}\mathrm{S}_{2}\mathrm{O}_{7}\left(l\right)$
	$H_2S_2O_7(l) + H_2O(l) \rightarrow 2 H_2SO_4(l)$
<u>Why</u>	we don't directly dissolving SO ₃ in water to form the acid?
p.s.	It is a highly exothermic reaction $\rightarrow d$
Bas	ic calculation about Concentration and molarity
•	An solution of acid/ base should have a unique concentraion/molarity
	\rightarrow you prepare a standard solution of NaOH (with known) by
weig	shing and dissolving a certain mass of solid into a certain volume of water.
By c	considering the two definitions, we can prepare an acid/base with known conc
1)	Concentration = mass of solute per unit volume of the solution.
	\rightarrow with the unit g/ dm ³
2)	Molarity = no of moles of solute per dm^3 of the solution.
	\rightarrow with the unit of mol dm ⁻³ / M

Copyright by Kit @ atu.hk.

4