Lesson 1 For Book 2

Acid and Alkalis

－Actually，there are many things existing in our daily life which are an acid or an alkaline／base．For example，vitamin C is a natural organic acid，which can be used as an anti－oxidant（抗＿＿化劑）
 While caustic soda (NaOH) is used in drain cleaners．

What is an acid？

－An acid is a speiecs which can produce hydrated hydrogen ions， $\mathrm{H}_{3} \mathrm{O}^{+}$，i．e．
 $\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}^{+}$，when the species is dissolved in \qquad ．There are two types of acid， they are ino \qquad acids and o \qquad acids．
－＂Basicity＂of an acid describes the maxium number of hydrogen ions（protons） that one acid molecule can produce in water．
1．monobasic－－－e．g． $\mathrm{HCl}, \mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+$ \qquad －－－only one $\mathrm{H}_{3} \mathrm{O}^{+}$
2．dibasic－－－e．g． $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{SO}_{4}+\ldots \mathrm{H}_{2} \mathrm{O} \rightarrow{ }_{-} \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{SO}_{4}{ }^{2-}$－－－two \qquad
3．tribasic－－－e．g． $\mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{H}_{3} \mathrm{PO}_{4}+{ }_{-} \mathrm{H}_{2} \mathrm{O} \rightarrow __{3} \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{PO}_{4}{ }^{3-}$－－－three \qquad
－The above equations are describing the dissociation of strong acid，that is，the irreversible dissolution of acid in water to produce h \qquad proton（s）．

Further Thinking

Please order the following inorganic acid in increasing strength by inspection only． $\mathrm{HNO}_{3}, \mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{H}_{3} \mathrm{PO}_{4}$
\rightarrow In fact，basicity of an acid is $n _$＿＿＿related to its strength ！！！

Some facts about acids

1．Acids have a \qquad taste．2．Acids can change \qquad litmus paper \qquad ．
3．Acids can conduct electricity．（Why？As they can produce mobile p \qquad ions．）
\rightarrow Acids are electrolytes，which means a source of mobile ions．
4．Acids can react with metals to give out s \qquad $+\mathrm{h}$ \qquad gas $\rightarrow \mathrm{A}$ \qquad B \qquad
e．g．Please write down the reaction between Calcium and HNO_{3} ．

5．Acids can react with metal oxides and hydroxides to give out s \qquad and water．
\rightarrow It is a typical type of neutralization，an \qquad thermic reaction．
e．g Please write down the reaction between Lithium oxide and Sulphuric acid．
\rightarrow Be careful of the mole ratio $=$
6. Acids can react with metal carbonates and hydrogencarbonates to give out salt + water + \qquad
\qquad gas, which can turn 1 \qquad water milky.
\rightarrow It is n \qquad a neutralization process as \qquad gas is also produced.
e.g. Please write down the reaction between sodium carbonate and hydrochloric acid.

Exercise 1 Successive ionization of an acid
It is known that an polybasic acid will give out its protons one by one.
a) Please write down the successive ionization equations of the organic acid, oxalic acid. (Hint = What is the basicity of it? \qquad .)
\rightarrow
\rightarrow
b) If oxalic acid and sulphuric acid are allowed to react with lime water, which contains C \qquad hydroxides, which acid will react more vigorously?
\rightarrow Remember that o \qquad acids are relatively weaker than inorganic acids.

What is an alkalis/bases?

- A base is a species which will accept a proton from an a \qquad to produce a \qquad anion, when the species is dissolved in water. There are two types of bases, they are ino \qquad bases and o \qquad bases.
- Similar to acids, if a base can dissolve in water irr \qquad to give OH^{-}ions, the dissolution process is called dissocation. If a base (which is not very soluble in water) can dissolve in water reversibly \rightleftharpoons to give OH^{-}ions, the process is called \mathbf{i} \qquad . e.g $\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{NH}_{4}^{+}(\mathrm{aq})+$ \qquad (aq)
\rightarrow Remember that all ions should be in the state (__) .

Further Thinking

Do you think that there is an organic base? Do you think that there is an polybasic
入 \ll
base? Here is an example, with basic sites.

Some facts about bases

1) Bases usually taste bitter.
2) Bases have a slippery feel.
3) Bases can turn \qquad litmus paper \qquad -
4) Bases are electrolytes, as they dissolve in \qquad to give mobile ions e.g. \qquad
5) Bases can react with acids to give salt and water \rightarrow Neutralization
6) Bases can react with non-metal oxides (e.g. $\left.\mathrm{CO}_{2}(\mathrm{~g})\right) \rightarrow$ Acid base reaction
\rightarrow Do you know that non-metal oxides e.g. CO_{2} or SO_{2} or SO_{3} is acidic. CO_{2} is one of the causes of acidic rain as CO_{2} can dissolve in water/river to give \qquad acid.
7) Bases can react with ammonium compounds to give salt + water + \qquad gas, which can turn red litmus paper \qquad .
e.g. $\quad\left(\mathbf{N H}_{4}\right)_{2} \mathrm{CO}_{3}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathbf{N H}_{3}(\mathbf{g})$

New concept ---Why ammonia is basic but its ammounium salt is acidic?
Remember the following exchange of roles --- there must be a pair of acid and base.
$\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
Base Acid
8) Bases can react with metal salts (which provide metal i \qquad) to give soluble or insoluble metal hydroxides and another metal salt. \rightarrow Precipitation process

Colour of Metal-ions containing solution	Ionic equation of common precipitations	Colour of precipitates
Al^{3+} pale green	$\mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})$	white
Ag^{+}colourless	$2 \mathrm{Ag}^{+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Ag}_{2} \mathrm{O}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}$	Dark brown
Cu^{2+} blue	$\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{~s})$	Deep blue
Fe^{2+} green	$\mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Fe}(\mathrm{OH})_{2}(\mathrm{~s})$	Dark green
Fe^{3+} yellow	$\mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s})$	Reddish brown
Mg^{2+} colourless	$\mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})$	White
Ni^{2+} green	$\mathrm{Ni}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Ni}(\mathrm{OH})_{2}(\mathrm{~s})$	Green
Pb^{2+} colourless	$\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Pb}(\mathrm{OH})_{2}(\mathrm{~s})$	White
Zn^{2+} colourless	$\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{~s})$	White

Extra Information

1) When excess $\mathrm{NaOH}(\mathbf{a q})$ is added on the solution with $\mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s}), \mathrm{Pb}(\mathrm{OH})_{2}(\mathrm{~s})$
and $\mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{~s})$ precipitates respectively, what will happen?
$\rightarrow \quad$ the ppt. will dissolve to form a \qquad solution.
2) When excess $\mathbf{N H}_{3}(\mathbf{a q})$ is added on $\mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{~s})$ and $\mathrm{Ag}_{2} \mathrm{O}(\mathrm{s})$, what will happen?
$\rightarrow \quad$ the ppt. will dissolve to form a \qquad solution.
*3) When excess $\mathbf{N H}_{\mathbf{3}}(\mathbf{a q})$ is added on $\mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{~s})$, what will happen?
\rightarrow the ppt. will dissolve to form a deep \qquad solution.

Three important inorganic acids

1. Concentrated/ diluted hydrochloric acid ()
\rightarrow Corrosive, volatile which gives out HCl (g, toxic w \qquad fume)
2. Concentrated/ diluted nitric acid ()
\rightarrow volatile and most specially, it has oxidizing power
\rightarrow must be stored in brown bottle so as to prevent light d \qquad
i.e. $4 \mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+4 \mathrm{NO}_{2}$ (brown gas) $+\mathrm{O}_{2}(\mathrm{~g})$
3. * Concentrated/ diluted sulphuric acid ()
\rightarrow highly corrosive as it is dehydrating and oxidizing e.g $\mathrm{H}_{2} \mathrm{SO}_{4}$ can remove water from sugar and other carbohydrates, to produce carbon, heat, steam, ...

$\left(\mathrm{CH}_{2} \mathrm{O}\right)_{\mathrm{n}}+$ Sulfuric acid $\rightarrow \mathbf{C}($ black graphitic foam $)+$ steam + Sulfuric acid $/$ water mixture

How can we produce $\mathrm{H}_{2} \underline{S O}_{4}$? --- Contact Process

In the first step, sulphur is burned to produce sulphur dioxide.

$$
\mathrm{S}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{2}(\mathrm{~g})
$$

This is then oxidized to sulphur trioxide using oxygen in the presence of a vanadium(V) oxide catalyst.

$$
\left.2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g}) \text { (in presence of } \mathrm{V}_{2} \mathrm{O}_{5}\right)
$$

The sulfur trioxide is absorbed into $97-98 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ to form oleum ($\mathbf{H}_{2} \mathbf{S}_{2} \mathbf{O}_{7}$).
The oleum is then diluted with water to form two moles of concentrated sulfuric acid.

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{l})+\mathrm{SO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}(\mathrm{l}) \\
& \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}(\mathrm{l})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathbf{2} \mathbf{H}_{2} \mathbf{S O}_{4}(\mathrm{l})
\end{aligned}
$$

Why we don't directly dissolving SO_{3} in water to form the acid?
p.s. It is a highly exothermic reaction $\rightarrow \mathrm{d}$ \qquad .

Basic calculation about Concentration and molarity

- An solution of acid/ base should have a unique concentraion/molarity
\rightarrow you prepare a standard solution of NaOH (with known \qquad) by
weighing and dissolving a certain mass of solid \qquad into a certain volume of water.

By considering the two definitions, we can prepare an acid/base with known conc..

1) Concentration $=$ mass of solute per unit volume of the solution.
\rightarrow with the unit $\mathrm{g} / \mathrm{dm}^{3}$
2) Molarity $=$ no of moles of solute per dm^{3} of the solution.
\rightarrow with the unit of $\mathrm{mol}_{\mathrm{dm}^{-3} / \mathrm{M}}$
