Lesson 4 For Book 1

Review Question --- Calculation of Free Energy

At 298K, solid potassium nitrate dissociates when heated to produce solid potassium nitrile and gaseous oxygen,

with the standard enthaply change of reaction = +124 kJmol-1

The standard entropies, for the formation of each species, are shown below:

Species	S ^{-O} (JK-1 mol-1)
KNO3 (s)	133
KNO2 (s)	152
O2(g)	205

- a) Write the chemical equation involving.
- b) Calculate the standard entropy change for the reaction.
- c) Calculate the standard free energy change for the reaction.
- d) Calculate the temperature at which this reaction becomes spontaneous.

Hint = Free energy change = $\Delta H - T \Delta S$

(+243 JK-1 mol-1, 51.6 kJ mol-1, T=510K)

<u>Chemical Bondings</u> → <u>Ionic bond</u>, <u>Covalent Bond</u>, <u>Metallic Bond</u>

Ionic Bond exists in _____ compounds. It is non-directional. Actually, this kind of force/bond is due to the columbic a_____ between cations and _____.

 \rightarrow Factors affecting the strength:

- 1) C_____ of the ions (_____ charges, stronger bond)
- 2) S____ of the ions (If the size of the ions are comparable \rightarrow better attraction \rightarrow _____ bond)
- Covalent Bond exists in _____ compounds, especially in o_____ compounds. They are due to the sharing of electrons between atom's n_____.

 \rightarrow More Accurately, it is formed by the overlapping of **atmoic** o_____.

Metallic Bond exists in m_____ compounds (no matter metal, semi-metal, transition metal) → Electron-sea model :

1) Inside the lattice of metal, metal atoms loses their v_____ electrons to form cations and the electron sea.

2) There exists ionic attractions between the m_____ electrons and the metal

c_____. \rightarrow Metallic Bond

 \rightarrow Factors affecting the strength:

- 1) no of valence electrons available (group 3 > 2 > 1)
- 2) size of the metal cations (go down the group, the strength will red_____)
- \rightarrow More formal --- charge to radius ratio

Ionic Compound (ONLY)

- Standard Enthalpy change of Formation = ΔH^{Θ}_{f} the enthalpy change when one mole of the ionic compound is formed from its constituent elements (in their standard states) under standard conditions.
- \rightarrow Please write down the equation for the formation of NaF (s)
- Recall that an ionic compound is formed by the "Combination" of a cation and anion. What are the enthalpy changes representing the formation of the cation (From <u>m</u>) and the anion (From halogen)

Formation of Cation (Metal(s) \rightarrow Metal (g) \rightarrow Cation(g))

→ Standard enthalpy change of **atomization** = ΔH^{\bullet} atom is the enthalpy change when _____ mole of **gaseous** atoms is formed from an element in the standard state under standard conditions.

→ Standard enthalpy change of **ionization** = ΔH^{\bullet} I.E. is the **energy** required to remove / enthalpy change when **one mole of electron** is re_____ from one mole of atoms or ions in the g_____

State.

→ Please write down the equation for the $\Delta H^{-2} 2^{nd}$ I.E. of Ca(____)

→ REMEMBER = It is more difficult to remove electrons from a positively charged species than from a neutral species $\rightarrow \Delta H^{-0}$ 1st I.E. $\Delta H^{-0}2^{nd}$ I.E.

Formation of Anion (Non metal e.g. oxides and halides)

→ Electron Affinity = $\Delta H^{\bullet}E.A.$ is the enthalpy change when one mole of electrons is <u>a</u> to one mole of atoms or ions in the gaseous state.

e.g. $O() + e \rightarrow O - ()$

Factors affecting the sign / magnitude of the $\Delta H^{0}E.A.$

1) The electronegativity of the species (the strength of nuclear attraction)

2) The electronic configuration \rightarrow the attraction of electron is more exo_____ if

a <u>/ full</u> filled electronic configuration can be attained.

Formation of an IONIC COMPOUND

→ Lattice enthalpy = ΔH^{\bullet} lattice is the enthalpy change when _____ mole of an ionic c_____ (better than salt) is formed from its constituent ions in the gaseous state under standard conditions.

 \rightarrow Physical meaning = a measure of **ionic bond strength**,

i.e. more negative the ΔH^{Θ} lattice, more strong is the electrostatic attraction between the ions.

× a measure of **thermal stability**

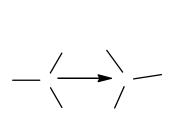
→ In HKAL, finding ΔH^{Θ} lattice of an ionic crystal is typical.

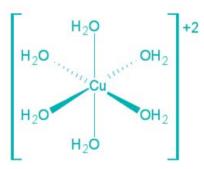
Exercise 1

Calculate the **experimental lattice enthalpy** of NaCl(s) using the following thermochemical data and the Born Haber Cycle, in which ΔH^{Θ} 6 represents the lattice enthalpy.

	ΔH^{\bullet} (kJmol-1)	$Na_{(s)} + \frac{1}{2}$	Cl _{2(g)} ΔH ₁	→ Na ⁺ CL ₂
ΔH^{Θ} atom of Na(s)	108	(3)		(s)
$\Delta H^{\bullet} 1^{st} IE \text{ of Na (g)}$	495	ΔH ₂	∆H ₃	ΔH ₆
Bond dissociation enthalpy			ΔH ₄	
of Cl ₂ (g)	239	Na _(g) + ($Cl_{(g)} \neq Na_{(g)}$
$\Delta H^{\Theta} EA \text{ of } Cl (g)$	-349		∆⊓ <u>5</u>	
ΔH^{Θ} f of NaCl(s)	-411	Fig 1.		(c) doc brown at www.docbrown.info

(-784.5 kJmol-1)


 \rightarrow The theoretical lattice enthalpy of NaCl(s) is -770kJmol-1. If the ionic crystal is in a good agreement with the **Perfect ionic model**, these two values should be close to each other.


Covalent Compound (only)

- Recall that a covalent bond, which is directional, is formed by the overlapping of atomic o_____. For elements in period 3 or above, octet can be extended as they have low l_____ vacant d o______, ie, the atoms can form more than four covalent bonds. E.g. PF₅, a colourless gas at room temperature and pressure
- As for the covalent bond, there is a type called **dative covalent bond**.

→ It is formed by the o_____ of an empty orbital of an atom with an orbital occupied by a l_____ pair of electrons of another atom.

 \rightarrow it is important for you to know that, in later chapter about the formation of **metal complex**, the bond between the metal centre and the **ligand** is dative covalent in nature.

• **Bond dissociation enthalpy**, ΔH^{\bullet} B.E., for convalent compound (especially

and

for organic compound), is the enthalpy change when **one mole of a particular**

bond in a particular environment is broken under standard conditions.

- \rightarrow the data given for you to do calculation are just an **average** value only.
- The enthalpy change of **atomization** of an organic compound = ΔH^{Θ} atom is the enthalpy change of the breaking down of one ______ of the gaseous compound into its cinstituent atoms in the g______ state.

e.g. $H_2C \longrightarrow CH_2(g) \rightarrow 2C(g) + 4H(g)$

• **
$$\Delta H^{\bullet}$$
 reaction = sum of average bond enthalpies of reactants –

sum of average bond enthalpies of products

(not frequently used)

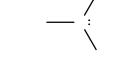

Drawing of covalent compounds --- Lewis Structure

Illustration e.g. NH3

- 1) Allocate the central atom , i.e. the least **electronegative** atom
- Count the total no of valence electrons, i.e., it is equal to the no of group of the atoms. That is, N has _____; H has <u>one</u>.
- 3) Then, draw the brief lewis structure without considering the actual shape of the compoound.

Now, there is only _____ valence electrons H - N - H

4) Since **Two** valence electrons remain unused, we add them to the central N atom and hence there is one lone pair electron of N atom.

p.s. \rightarrow Negative Ion: Add the number of electrons equal to the negative charge on the ion. E.g. no of valence electron of NH₂⁻ = 8+1 = 9

→ Positive Ion: Subtract the number of electrons equal to the positive charge on the ion. E.g. no of valence electron of $NH_4^+ = 8 - 1 = 7$

 \rightarrow If the central atom can extent its octet, double bond or even triple bond can be formed

 \rightarrow When **resonance is possible**, more than one Lewis structure can be drawn **REMEMBER** = more Lewis structure / Resonance structure, more stable is the compound.

1) Draw Lewis structures for the following molecules or polyatomic ions.

Revision Notes

a) H₂O

b) BF₃

c) PCl₅

d) H_2S

e) SOCl₂ f) IO₃⁻ (S is the central atom, O and Cl are both bonded to S)

g) CH₃CH₂OH

h) CH₃OCH₃

2. Draw Lewis structures for the following molecules or polyatomic ions:

a. N₂

b. CH₃COOH (acetic acid) (Be sure to use the correct skeletal arrangement for the –COOH group. It is **NOT** straight chain C–O–O–H.)

c. HNO₃ (nitric acid)

d. H_2SO_4

e. CO₂

 $f. N_2H_2$

g. CO

h. O_3 (Structure is not a ring, it is a chain.)