Lesson 2 For Book 2

Exercise 1 Review for the concept of Molarity

 $30.0~\text{cm}^3$ of 0.10~M KOH is completely neutralised by $20.0~\text{cm}^3$ of dilute H_2SO_4 to form K_2SO_4 solution. What is the molarity of the salt solution obtained ?

- A. 0.03 M
- B. 0.05 M
- C. 0.06 M
- D. 0.10 M

pH scale and indicator

- pH scale (0-14) is used to define the acidic/alkaline property of a solution. It measures the concentration of ____ ions (but not OH⁻) in a solution
 ⇒ pH = -log[H₃O+]
- Noted the following three descriptive terms
 - 1) **Acidic** \rightarrow when $[H_3O+] > [OH-]$

and pH is _____ than 7

2) **Basic** \rightarrow [H₃O+] < [OH-]

and

pH is _____ than 7

3) Neutral \rightarrow when $[H_3O+] = [OH-]$

and

pH is equal to 7

Further thinking Can pH be a neg. number? The answer is YES.

Calculate the pH of the following acid.

- a) $0.1M [H_3O+]$
- b) $1M [H_3O+]$
- c) $10M [H_3O+]$
- An acid-base indicator is used to have a brief examine of the pH value of a solution. They can serve as an indicator as they *change their colours with respect to the ____ of a solution*. The common ones are Litmus paper, methyl orange and phenolpthalein.
- Methyl orange and phenolpthalein are commonly used in **titration**. They are
 weak acid in nature. Their pH ranges are shown below: (Please remember them!)

	Acidic colour	Basic colour
Methyl orange	red when pH < 4.4	Yellow when pH > 7
Phenolpthalein	Colourless when pH < 8.3	Red when pH >10

- → To measure the pH value of a solution accurately, we can use pH meter.
- → pH value of a solution has NO direct relationship with its acidic strength.

 i.e 10M CH₃COOH (an organic acid) has a lower pH than 1M HCl, but HCl is stronger. We can **only** say that 10M CH₃COOH is more a_____ than 1M HCl.

Exercise 2

- a) What is the $[H_3O+]$ of a sample of rainwater with pH 5.7?
- b) Match five aqueous solutions *NaOH*, *NH*₃, *KCl*, *CH*₃*COOH* and rainwater of equal molarity with the following pH shown on the pH scale below.

	A	В	С	D	Е		
1			7			14	

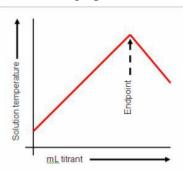
- → On the left, it is the range; On the right, it is the range.
- \rightarrow A solution of metal salt has the pH of 7 = neutral.

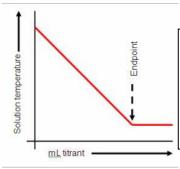
Comparison of the strength of acids and alkalis

- Noted that a strong (weak) acid is one which completely (only slightly) ionizes
 in water to give out _____ ions; while a strong (weak) alkali is one which
 completely (only slightly) ionizes in water to give out _____ ions.
- \rightarrow Stength refers to the degree of <u>i</u> of an acid/alkali in the solution.
- 1) By measuring pH of solution, if all samples are in the same molarity.
- \rightarrow For two acids/alkali (A / B) in the same molarity, A has a lower (higher) pH means that A can give a higher molarity of _____ ions (_____ ions), i.e., the ionization of A is more c_____. \rightarrow A is a stronger one.
- 2) By measuring the electrical conductivity of solutions with the same molarities.
- → For two acids/alkali (A / B) in the same molarity, A has a higher electrical conductivity means that A can give a higher molarity of ____ / ___ ions, i.e., the ionization of A is more c____. → A is a stronger one.

Exercise 3 Reversibility vs Irreversibility

Below is the respective ionization equation of three different acids. Arrange their strengths in descending order by looking at their equations.


- i) $CH_3COOH + H_2O \longrightarrow CH_3COO^- + H_3O^+$
- ii) $HClO_4 + H_2O \rightarrow ClO_4^- + H_3O^+$
- iii) $H_2CO_3 + H_2O$ $CO_3^{2-} + H_3O^+$
- → Reversible ionization = weak acid/base; Irreversible ionziation = strong acid/base
- → Organic acids should be than inorganic acids.


Neutralization and preparation of ionic salts

Revision Notes

- You must know that the mixing of an a____ species and b____ species is called **neutralization**, which gives out **water**, **salts and heat** $\rightarrow exo$ ____ in nature.
- Due to the ___thermic nature of neutralization, we have the question about the interpretation of a graph of **thermometric titration** → temp. change.

For exothermic reaction e.g neutralization

For endothermic reaction

- → End point of the titration = the "Hottest" and "Coldest" points
- \rightarrow After the end point, the solution will be *cool down*.

Solubillity of ionic salts

• Recall that ionic salts are formed by the combination of a c_____(usually from metal) and an a_____. Ionic salts (solute) can be soluble or insoluble in water (solvent). They are determined by the attraction between M⁺ and X⁻.

Soluble salts	Examples		Insoluble salts	Examples
1. All K ⁺ ,Na ⁺ ,NH ₄ ⁺ salts	✓	KCl, NaCl,		
2. All (NO ₃ ⁻) salts	✓	KNO _{3,}		
		$Mg(NO_3)_2$		
3. All (HCO ₃ ⁻) salts	✓	NaHCO ₃		
4. All (Cl ⁻ ,Br ⁻ , I ⁻)	✓	MgCl ₂ , NaBr	AgX 、PbX ₂ 和	★ AgCl , PbBr, HgI ₂
\rightarrow except AgX \cdot PbX ₂ and			HgX_2	
HgX_2			$(X = Cl \cdot Br \text{ or } I)$	
5. All (SO ₄ ²⁻),除了	✓	MgSO ₄	BaSO ₄ and	➤ BaSO ₄ 和 PbSO ₄
BaSO ₄ 和 PbSO ₄		CaSO ₄ 只微溶	PbSO ₄	
6. (CO ₃ ² -) of K ⁺ , Na ⁺	✓	KCO ₃ ,NaCO ₃		× CaCO ₃ ∘
and NH ₄ ⁺				
7.Potassium/sodium	✓	NaOH		★ Mg(OH) ₂
hydroxide		Ca(OH) ₂ 只微溶		
8. Na ₂ O, K ₂ O	✓	K ₂ O, CaO 只微溶		≭ MgO, BaO

Revision Notes

• Remembering the solubility of salts can h*elp* you select the proper methods to prepare the salts. Also, it helps you write the **ionic equation** of a reaction.

Exercise 4			
Please write down the ionic equation of NaOH + H_2SO_4 and $Ca(OH)_2$ + HCl			
1) 2)			
\rightarrow You will find that $H^+ + OH^- \rightarrow H_2O$ is the basic ionic equation for neutralization.			

Preparation of salts

- Two important steps
- 1) Making the salt by reactions → Neutralization for soluble salts
 i.e. the mixing of excess metal/insoluble base/insoluble carbonate with acid
 i.e. the mixing of soluble acid and base (by titration → more accurate mixing)
 Qu: State a reaction which can prepare the salt, Cu(NO₃)₂.
 (Hint = From the formula of the salt, we can guess the use of which acid, _____)
 e.g.

→ Precipitation for insoluble salts

i.e. the mixing of two solutions, which contain the required *Cation and Anion*.

Qu: State two solutions required to form the insoluble salt BaSO₄(s)

(Hint = Separate the two required ions, _____ and ____)

e.g.

- Separating and purifying the salts. → soluble salts are separated by crystallization and then filtration and then drying
 - → insoluble salts are separated by filtration and then drying.

(**drying** is sometimes needed when we want to collect an **anhydrous** crystals/salts.)

Special Remarks

- → During the prepartion of salt (e.g. CuSO₄), sometimes the **reaction mixture** is heated first and then cooled down. This allows **the formation of salts** as the dissolving power of water d______ when temperature is lowered.
- → If the raw material used to prepare salts is contaminated by **coloured impurities**, we can use **Activated Charcoal** (活性炭) to absorb the coloured impurities, followed by filtration.