Lesson 7 For Book 1
Review Exerice Drawing of unit cell
The lattice structure of BaO (s) is described as the interpenetration of two simple
cubic lattices, one of Ba^{2+} ions and the other of O^{2-} ions.
a) Draw the unit cell of BaO (s), labelling the Ba^{2+} and O^{2-} ions.
(Hint = use a ruler to draw the cubic first.)
b) What is the coordination number of each O^{2-} ion in the structure?
\rightarrow You should remember the number (Lesson 6) unless you can find it by looking at
what you have drawn. (for the anion only!) (8)
Definition of Radii
1. Ionic radii = the radii of an perfect ionic compound, that is, the internuclear
distance \rightarrow the sum of the cationic and anionic radii.
2. Covalent radii = half the internuclear distance between two atoms in a c
bonded molecule
\rightarrow half of the bond length of homoatomic covalent molecules e.g.
H_2, O_2
\rightarrow the sum of the covalent radii of atom A and B (heteroatomic)
3. Metallic radii = half the internuclear distance between two metallic atoms/ ions
in a metallic crystal.
4. van der Waal's radii = half the distance between the nuclei of two atoms in
adjcent molecules
\rightarrow You should bear in mind that the consideration of "radii" can help us compare
some physical properties of different compounds e.g. strength of all bonds, m.p./b.p.
of all compounds, electrical conductivity of m, polarizability of a,
polarizing power of c
Exercise 1 An iodine molecule can be represented but he diagram below, with each
dot representing an atomic nucleus.
i) Using one or more diagrams of this kind, illustrate your
understanding of the two terms "covalent radius" Rc and
"van der Waal's radius" Rv.
ii) Which of the values (Rc or Rv) is larger than the another? Account for your
anwser.
\rightarrow Be careful, you should be clear of the concept of covalent bond (wa molecule)

and intermolecular force (**b**______ two molecules).

Different kinds of compounds
1. Molecular structure = S molecular and M structure
\rightarrow depends on molecule's size e.g. Iodine is s molecule while some plastic is
m molecule as plastic consists of a large c
а с-я-с + анды-я-цы, - с в с к я д · + 2 ндо но он - к - с в с к я д · + 2 ндо
iodine in Face centred cubic General condensation polymerization
reaction for nylon
\rightarrow They are made up of discrete molecules held by inter force
(van force and h bond).
\rightarrow As for simple molecules, they have b.p. / m.p. as the intermolecular force is
w They can conduct electricity as they have no delocalized electrons /
m ions.
\rightarrow The existence of H bond will increase the boiling / melting point.
Exercise 2 Comparison of boiling point
a) Draw the Lewis structure of a H_2O molecule and F_2O molecule.
(Hint = Count the no. of valence electrons)
b) Which compound, H_2O or F_2O , would have a higher b.p.? Explain your anwser.
2. Giant Structure
\rightarrow all the atoms or ions present in the lattice are linked by strong bonding.
\rightarrow Giant Ionic (Lesson 6), Giant covalent and Giant metallic (Lesson 6)
Giant Covalent Compounds
Giant Covalent structure is one in which all atoms are linked together by a
continuous system of well-defined electron-pair bonds (c / /
bonds). The bonds are thus diectional .
\rightarrow High melting and boiling point
Example Allotropes of carbon
a is d; b is g;
d is C_{60} and e is C_{540} ;
\rightarrow Which one/two of the allotropes has/have the Lowest m.p?
and as they are just discrete molecules .!

Exercise 3 Something about hydrides

Consider the hydrides of three period 3 elements: SiH₄, PH₃ and H₂S.

For PH₃

a) For each hydride, draw a 3-D structure showing the bond electron pairs and lone electron pair (s), if any, of the central atom.

<u>For H_2S </u>

Valence electron = 8

central lone pair electron = 0

b) Explain why H_2S has a higher boiling point.

(**hint** = Actually, they are all simple molecule. The difference in b.p. is not due to their types of structure.)

Extra Concept

1) Solubility of compounds in some solvent

 \rightarrow In Lesson 5, you should learn that what solubility depends on, i.e. intermolecular force.

 \rightarrow In detail, Solubility is the property of a s____, l___ or g____ chemical

substance (i.e. **solute**) to dissolve in a solid, liquid, or gaseous **solvent** to form a homogeneous solution of the solute in the solvent

 \rightarrow How well the solute can mix with the s_____

→ It depends on the use of solvent (p_____ or non p____) and the kinds of solute (polar or non polar)

<u>Like-disolve-like concept</u>

To dissolve a solute, we need to break the s_____ and s_____ interactions (I₁). Then, we have the new formation of s_____ and s_____ interactions (I₂).

 \rightarrow If I₂ is stronger / more exo_____ than I₁, the solute is said to be soluble in that solvent.

 \rightarrow In fact, polar solute likes polar solvent while _____ polar solute like non polar solvent as the type of interactions involved should be similar.

→ We should know that **organic solute** can "only" be dissolved by ______ solvent. <u>New concept --- For ionic compound</u>

As for ionic compounds and water as solvent, to dissolve them, we need to break the i_____ lattice. What is forming is the electrostatic attraction between p____ water molecule and those m_____ ions. Thus, we have,

 $\Delta H_{\text{soln}} = \Delta H_{\text{hydration}} - \Delta H_{\text{lattice}} \rightarrow \text{Energetical aspect!}$

Exercise 4 Determination of solubility

Try to arrange the solubility of CO_2 , NH_3 and O_2 in water in descending order with explanation. $(NH_3 > CO_2 > O_2)$

2) The value and the sign of $\Delta H_{\text{lattice}}$ of ionic compounds

 $\Delta H_{\text{lattice}}$ measures the energetical stability of an I____ crystal/salt, which is formed by the combination of an a_____ and a cation.

 \rightarrow if the sign is negative, the ionic crystal is energetically stable.

Soft ions and Hard ions

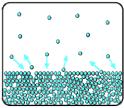
• Soft ions = those ions with high r____ to charge ratio, i.e., have a large electron cloud and have a high polarizability

e.g. Rb+, I-

• **Hard ions** = those ions with low radius to c_____ ratio, i.e. have a small ionic Size and have a high polarizing power.

e.g. Li+ , F-

Concept = Soft ions like s_____ ions while hard ions like h_____ ions


 \rightarrow Similar ions with similar size will combine to form a more stable ionic compound as they can have a better overlapping/ packing in lattice.

soft cations +soft anions / **hard cations +hard anions** can form a more stable ionic salt!

Vapour pressure of a solution

All liquid will evaporate to form vapour at all temperature (except at absolute zero) as the molecules are gaining K.E. . The term vapour pressure relates to the tendency of particles to escape from the liquid.

→ If a liquid has a high tendency to evaporate, the liquid is said to be V____.

 \rightarrow Hence, the liquid has a high/low ? vapour pressure. (at a certain temp.)

Look at the diagram, you should realise that if a liquid is volatile, there are more molecules exerting a force to the container \rightarrow higher vapour pressure.

Concept = A liquid with high vapor pressure will have a lower/higher boiling point. *Extra Knowledge --- Ionic Fluid*

- An ionic liquid (IL) is a **salt** in the liquid state. They can be used as powerful **solvents** and **electrically conducting** fluids (i.e. electrolytes).
- Ionic liquids are often moderate to poor conductors of electricity

 (as they have ____ mobile ions), non-ionizing (e.g. non-polar), highly
 viscous and frequently exhibit low vapor pressure (Why? As the bond involved is ____ bond!).