From the writer

To learn chemistry better, you should:

1) Understand the Periodic Table thoroughly.
2) Do exercises after revision.
*2) Remember the definitions of some important terms.
3) Write your own set of notes.

Lesson 1 For Book 1

Atomic Structure

- What are the basic components of an atom's nucleus? They are \qquad , and \qquad .
- For a (neutral) atom, the no. of p \qquad must be the same as the e \qquad .
- Definition of atomic number $=\mathbf{Z}$ is the no of \qquad in the nucleus of the atom.
- \quad Definition of mass number $=\mathbf{A}$ is the no of \qquad 1 and \qquad in the nucleus of the atom.
- How about isotope? I \qquad are atoms of the same e \qquad with the same number of p \qquad but different number of \qquad . Basically, different isotopes should have the same physical properties (except for the radio-reactivity) and also chemical properties. However, it is likely that isotopes have a different abundance in the earth.

Exercise 1

${ }^{10} \mathbf{B C l}_{3}$ and ${ }^{11} \mathbf{B C l}_{3}$ are compounds formed respectively from the two isotopes of boron with chlorine.
${ }^{10} \mathrm{BCl}_{3}$ reacts with water to give white fumes. State, with explanation, the expected observation when
${ }^{11} \mathrm{BCl}_{3}$ is added to water.
\rightarrow The concept of isotope is applied for atom, but not for molecule. However, the compounds formed from the different isotopes of an element should have the \qquad chemical property.

Basic Calculation about no of moles, molar mass, mass , no of particles......
i) What is the mass of a water molecule? (Given : Avogadro's no $=6.02 * 10^{23}$)
ii) How many Cl- anions in $24 \mathrm{~g} \mathrm{CaCl}_{2}(\mathrm{~s})$?
iii) ${ }^{* * *}$ Which of the following gases is the densest? (Hint : Consider their relative molecular mass.)
A. CO_{2} - carbon dioxide
B. Cl_{2} - chlorine
C. CH_{4} - methane
D. $\mathrm{C}_{3} \mathrm{H}_{8}$ - propane

Empirical Formula and Molecular Formula and Structural Formula --- For organic compounds

- In fact, empirical formula of an organic sample (It is the compound which contains the elements of \qquad and \qquad) is found by the complete c \qquad of the sample. It is the simplest number ratio of the atoms present in the compound.
e.g. $\left(\mathrm{CH}_{2}\right)_{\mathrm{n}}=$ \qquad , where n must be an integer.
$\rightarrow \quad$ If n is $=4$, \qquad is the Molecular formula of the compound.
- Structural formulae is the most important one because it can enable us to find the exact structure of the compound. As for the above example, $\mathrm{C}_{4} \mathrm{H}_{8}$ represents a lot of possible compounds, e.g.

So, to draw the actual structure of $\mathrm{C}_{4} \mathrm{H}_{8}$, we need to determine the \qquad formula, again.

Exercise 2

Compound X has the following composition by mass:
$\mathrm{C}=70.6 \% \quad \mathrm{H}=5.9 \% \quad \mathrm{O}=23.5 \%$
i) Please find out the empirical formula of L.
ii) Given that its rel. molecular mass is around 136, what is its molecular formular?

Exercise 3

Determine the empirical formula of Copper (II) oxide using the following results.
Mass of test tube $=21.430 \mathrm{~g}$
Msass of test tube + copper (11) oxide $=23.321 \mathrm{~g}$
Mass of test tube + copper $=22.940 \mathrm{~g} \quad$ (Hint : Find the mass of the oxide and copper respectively.)
\rightarrow Actually, you should have the answer in your mind and you should know what the process is, that is, R \qquad of the oxide by town gas = CO and hydrogen.

- Although the structural formulae is useful, but it can be hardly found. Later, you will learn the methods to find and identify the structural formula for an organic sample. But now, you should know the basic thing about Mass Spectrometry first.

Mass Spectrometer Please sketch the main parts of a typical mass spectrometer.

Important components

1) Vaporization chamber : To vaporize the sample \rightarrow limits to sample without a very high \qquad point.
2) Ionization chamber : To ionize the g \qquad sample by the fast moving e^{-}bombardment.

$$
\rightarrow \text { i.e. } \mathrm{X}(\mathrm{~g} \quad \text { state })+\mathrm{e}-\rightarrow \mathrm{X}^{+}+_ \text {e- }
$$

3) Electric Field : To speed up the ionized sample \rightarrow should be cation/ anion?
4) Magnetic field : To deflect the cations towards the \qquad detector according to their mass to charge ratio. i.e. m / z, where we assume $z=$ \qquad -.

Related Questions

1) How the ionization of the sample can be achieved?
2) How the ions can be detected?
3) From the data obtained by M.S., cal the rel. atomic mass of Gallium

Ga-69	Ga-71
Rel. Abundance $=60.4 \%$	Rel. Abundance $=39.6 \%$

Features of a mass spectrum

Here is the spectrum of dichloromethane .
From the last line, we can find out the molecular mass of the sample.
i.e. $=$ \qquad (unit =)

From the Rel. Abundance and the m / z ratio, we can find the Rel. molecular mass of the molecule.
(rel. = no unit)

Exercise 5

E D
C B A

Consider the mass spectrum of Chlorine gas, answer the following question.
a) Explain why there are five peaks in the M.S..
\rightarrow Note that Cl has the isotopes \qquad and \qquad .

b) The ratio of rel. Abundance of \mathbf{D} to \mathbf{E} is 1:3
i) find the rel. atomic mass of Chlorine. (but not chlorine molecule)
ii) find the ratio of rel. abundance of A to B to C .

Ideal Gas Equation

- In the equation, Pressure $=\mathrm{Nm}^{-2}(\mathrm{~Pa}) ; \mathrm{V}=\mathrm{m}^{3} \mathrm{~mol}^{-1} ; \mathrm{T}=\mathrm{K}$;
and R is the ideal gas constant $=8.314 \mathrm{JK}-1 \mathrm{~mol}-1$
\rightarrow Actually, $\mathrm{P}^{*} \mathrm{~V}$ has the unit of \qquad , which is an energy term.
Some conversions =1) $\mathrm{PV}=\mathrm{nRT}$

2) $\mathrm{P} M=\rho \mathrm{RT} \quad(\mathrm{M}=$ molar mass $)$
3) $P=C R T \quad(C=$ molarity $)$

Exercise 6

A mixture of Krypton and Xenon is obtained from air. At 300 K and a pressure of 0.790 atm, the mass of $1.00 \mathbf{~ d m}^{3}$ of the mixture is 2.79 g . What is the apparent molar mass of this mixture? (Hint : Be careful of the units)

