From the writer

To learn chemistry better, you should:

- 1) Understand the Periodic Table thoroughly. *2) Remember the **definitions** of some important terms.
- 3) Do exercises after revision. 4) Write your own set of notes.

Lesson 1 For Book 1C --- Metals

Usages of Metals

• Metals have a lot of daily applications. For example, I____ can be used for constructing building,

C_____ for making electrical wires, A_____ for making soft drink cans,

- Titanium for making aircrafts and G_____ / S_____ for making coins
- \rightarrow Metals can serve human for the above usages because metals have the following **physical properties**.
- 1. Hard / strong 2. Malleable and ductile
- 3. corrosion resistance 4. Light
- 5. Good conductor of h____ and e____ (WHY?)
- To explain the reason **why** metals have such properties, we can consider their structure by

Electron sea model --- Features needed to be remembered

1) To construct the **lattice** of metal, metal **atoms loses** their v_____ electrons to form c_____ .

(Remember = the no. of **valence electrons** is equal to the **group number**.

e.g. Sodium has _____ valence electron while Calcium has _____ valence electrons)

- 2) The electrons move freely around the cation lattice and hence form the **electron sea**.
- \rightarrow metals are thus able to conduct e_____
- 3) There exists **ionic** attractions between the **free electrons** (or delocalized electrons) and the metal
- c_____. These attractions form the strong **metallic bond** and thus, metals are strong, hard, ductile.

Extraction of Metals

- Mechanical separation --- For very stable metals only, e.g gold.
- Heating the metal ore alone --- For extracting un _____ metals only, e.g mercury and silver.
- \rightarrow Actually, **metal ore** is usually a metal oxide.
- → So, from metal oxide to metal, this process is a R_____ . (e.g. Silver oxide → silver + ____)

• **Carbon R**_____ --- Upon heating with carbon, some metals can be extracted from their ore. e.g iron and lead and zinc.

Illustration : For iron

The carbon reduction takes place in a blast furnace (Large scale). The flow of reduction is

- \rightarrow Coke (carbon) is oxidized to CO
- \rightarrow CO (g) acts as the r_____ agent to reduce metal ore (metal oxide) to m_____.

i.e. Fe_2O_3 (a mixture of Fe(2, 3) oxide) + $CO(g) \rightarrow Fe(s) + CO_2(g)$

Electrolysis --- The most expensive but efficient method to extract more r _____ metals e.g. Na, _____, K, Ca, Al → Redox reaction is involved
 Illustration : For the extraction of sodium from sodium chloride

Cathode (- pole) = $Na^+(aq) + e^- \rightarrow Na(s) \rightarrow$ pure Sodium can be extracted

Anode (+ pole) = $2Cl - -> Cl_2 + 2e - \rightarrow$ pure chlorine is produced

Reactivity of Metals

- By definition, **reactivity** is the **readiness** of metals to react with others. In other words, we have :
 - \rightarrow the more the reactive the metal is, the **less stable** it is
 - \rightarrow the more the reactive the metal is, the **faster** will be the reaction
 - \rightarrow the more the reactive the metal is, the **lower amount of energy** is required.
 - \rightarrow the more the reactive the metal is, the **larger amount of energy** (heat) is released.
 - \rightarrow the more the reactive the metal is, the easier to lose electrons. ***
- For metals, going down the g_____, R° ; Across the p____, $R \downarrow ***$

Example 1 Burning in Air

Reactivity order $= K > Na >$	Ca > Mg > Al > Zn >	Fe > Pb > Cu > Hg >	Ag > Pt > Au
-------------------------------	---------------------	---------------------	--------------

- \rightarrow Observations for the *first five* = *Lilac flame*, *golden yellow flame*, *brick red flame*, *very bright white flame*, *heat and white powder*
- \rightarrow Observations for the next five = heat and yellow powder when hot while white when cold,

yellow sparks with black solid, powder (orange when hot and yellow

when cold) formed, turns black, red powder formed

 \rightarrow <u>No observations</u> for the <u>last three</u>.

Example 2 <i>Reacting with water</i>			
Reactivity order = $K > Na > Ca > Mg > Al > Zn > Fe > Pb > Cu > Hg > Ag > Pt > Au$			
→ <i>K</i> , <i>Na and Ca</i> can react with c water to give metal and hydrogen,			
where hydrogen gas can be tested with a <u>b</u> splint, with a <u>sound</u> .			
\rightarrow Mg, Al, Zn and Fe can react with steam (h water) to give metal and hydrogen.			
\rightarrow The remaining ones have <u>no reaction</u> .			
\rightarrow Question : Why do we need to store sodium in paraffin oil?			
Example 3 Reacting with dilute and cold acid			
Reactivity order = $K > Na > Ca > Mg > Al > Zn > Fe > Pb > Cu > Hg > Ag > Pt > Au$			
\rightarrow K and Na react with acid explosively to form salts and hydrogen			
(K has hissing sound and flame while Na has a flame)			
\rightarrow Ca, Mg, Al, Zn, Fe and Pb can react with acid very slowly.			
\rightarrow The remaining ones have <u>no reaction</u> .			
\rightarrow Question : What is the type of the reaction between metal and acid?			
It's called Acid Base reaction but not neutralization.			
Chemical Equations			
• Full equation or ionic equation			
e.g.1 Please write down the equations for the reaction between Lithium and oxygen			
→ Full= → Ionic = XXX because Li_2O is in in water.			
e.g.2 Please write down the ionic equation for the neutralization process			
\rightarrow H ⁺ + OH> H ₂ O **Basically, the ionic eqt for 'all' neutralization is the same.			
Types of reactions for metals			
1. Oxidation and Reduction involves the transfer (<u>lose</u> and <u>gain</u>) of e			
2. Acid and Base reaction likely to be an exo reaction which will give out h			
3. Metal Displacement A metal with higher reactivity (M ₁) will displace any metals with lower			
reactivity (M_2) from the solution of a compound of M_2 .			
e.g. Zinc metal plate can displace copper II ions from a solution of copper (II) sulphate			
\rightarrow full equation =			
\rightarrow Observations are very important = a) the solution will turn from blue to p blue			
b) the zinc plate will dissolve			
c) b copper will be formed on the plate.			
Copyright by Kit @ atu.hk. 3			

Exercise 1 Please balance the following equations \rightarrow To learn the **Stiochiometry** of a reaction.

a)
$$Al(s) + O_2(g) --> Al_2O_3(s)$$

b) $Cu(NO_3)_2(s) --> CuO(s) + NO_2(g) + O_2(g)$
c) $KClO_3(s) --> KCl(s) + O_2(g)$
d) $FeS(s) + O_2(g) --> Fe_2O_3(s) + SO_2(g)$
e) $NH_3(g) + O_2(g) --> NO(g) + H_2O(1)$
f) $Mg_3N_2(s) + H_2O(1) --> MgO(s) + NH_3(g)$
g) $Al(s) + Fe^{2+}(aq) --> Al^{3+}(aq) + Fe(s)$
*h) $C_2H_6(g) + O_2(g) --> CO_2(g) + H_2O(1)$
*i) $C_2H_2(g) + O_2(g) --> CO_2(g) + H_2O(1)$
Exercise 2 Will there be any reactions? State the equation and observation (s) if there is.

- a) A piece of Mg is added to dilute sulphuric acid.
- b) A piece of calcium is heated strongly in air.
- c) A piece of gold is heated.
- d) Sodium oxide powder is heated.
- e) An iron nail is added to zinc sulphate solution.
- f) A zinc plate is added to iron (II) sulphate solution.
- g) Copper powder is added to hot and conc nitrate acid.

Basic Things --- About the atomic structure of an atom

- What are the **basic components** of an atom's nucleus? They are _____, and _____.
- For a (neutral) **atom**, the no. of p_____ must be the same as the e_____.
- Definition of atomic number = \mathbf{Z} is the no of ______ in the nucleus of the atom.
- Definition of mass number = A is the no of _____ and _____ in the nucleus of the atom.
- How about isotope? I_____ are atoms of the same e_____ with the same number of

p_____ but different number of _____. Basically, different isotopes should have the **same** physical properties (except for the radio-reactivity) and also chemical properties. However, it is likely that isotopes have a different abundance in the earth.