Lesson 2 For Book 1C Corrosion of metals

In the presence of air, water or other substances (to be discussed later in this note) in the surroundings, metals will gradually be deteriorated. The process is called **corrosion**.

Reminder = 1) Corrosion has a wider meaning than rusting, as **rusting** can be used only for the

corrosion of iron.

2) Corrosion/rusting is a chem____ change, which involves a reaction.

How does rusting happen?

In fact, it is a slow/fast? process and an **exothermic** reaction in nature, which will release heat to the surroundings. Basically, it involves the o______ of iron first. \rightarrow **REDOX reaction**.

Fe (s) -->
$$Fe^{2+}(aq) + 2e$$
-

Then, **a series** of redox reaction happens, in which the oxidation of Fe^{2+} (reduction of oxygen) happens with the formation of Fe^{3+} afterwards.

$$4 \text{ Fe}^{2+} + \text{O}_2 \rightarrow 4 \text{ Fe}^{3+} + 2 \text{ O}^{2-}$$

Finally, due to the presence of water, we have

 $Fe^{2+} + 2 H_2O = Fe(OH)_2 + 2 H^+$ and $Fe^{3+} + 3 H_2O = Fe(OH)_3 + 3 H^+$

Most importantly, the **overall equation** can be represented by

 $4Fe(s) + 3O_2(g) + 2nH_2O(l) -> 2Fe_2O_3 nH_2O(s, reddish brown)$

Ways to speed up the rusting

- 1. Adding metals in an a ______ solutions (vs. **Alkaline** solutions can s ______ down the rusting. Why?)
- 2. Adding metals in a solution in the presence of soluble salts, i.e., an electrolyte e.g. NaCl
- 3. Heat the contacting solution up --- increasing the temperature (\rightarrow this speed up many reactions.)
- 4. Presence of a less r_____ metals in contact with iron and

the presence of uneven/ sharply pointed/ scratched regions.

How to observe the rusting process? --- Rust indicator

Rust indicator contains $K_3[Fe(CN)_6]$. It can detect the presence of _____ ions since Fe^{2+} ions can turn the rust indicator from yellow to blue.

How t	0	prevent	rusting?

(Please try to memorize them all)

Copyright by Kit @ atu.hk.

- 1) Coating with paint, plastic, oil or grease so as to prevent the contact with a _____ and water moisture.
- 2) Galvanization --- coat metal with zinc as Zn can form a protective oxide layer.
- 3) Tin-plating Electroplating
- 4) Cathodic protection --- suppress the redox reaction by preventing metals from losing e⁻.
- 5) Sacrificial protection --- the more _____ metal corrodes instead of the less reactive metal.
- 6) Using alloys of iron --- mix iron with innert substance e.g. c____.
- 7) Anodization --- For Al only, which involves the thickening of the Al_2O_3 layer.

Extra knowledge --- The application of rusting of iron

Situation: Iron powder can be used to make 'warm packets' for keeping users' warm. A kind of warm packet is made by putting iron powder in a packet which allows **air** to pass through. The packet aslo contains other substances for speeding up the generation of heat.

- a) According to the situation, using your chemcial knowledge, suggest how the packet can generate
 heat. *
- b) Someone suggested that a piece of iron should be used instead of using powder. Comment on his/her statement.

c) The other substances include moist **sodium chloride**. Suggest why it can speed up the production of heat.

The mole concept --- Basic chemistry

The following parts are vital in studying chemistry.

The **mole concept** is used to define the q_____ (amount) of substance in chemical point of view. One mole = $6.02 * 10^{23}$ numbers of particles \rightarrow Avogadro number L in **mol**⁻¹. As you should realise, one 'mole' involves a large number of substance in fact.

→ Molar mass = the mass in grams of _____ mole of the substance. (g mol⁻¹). Actually, molar means **per mole**. So, you may expect that molar volume bears the unit dm^3 ____.

Remember : molar mass = mass / no of mole and no. of mole = no of particle / L

 \rightarrow Be careful of the **unit**.

 \rightarrow

Exercise 1 Given that a cyclooctane, named **1,3,5,7-Cyclooctatetraene**, which is an organic compound, has the following structure.

- a) What is the molecular formular of it?
- b) What is the molar mass of it? (Unit is required)
- c) If there is 10g of the compound, how many "no of molecule" (not no. of mole) are there? $(C_8H_8, 104.15 \text{ g/mol}, 5.78*10^{22})$

Chemical Formulae of compounds

Actually, we need to learn about the empirical, ionic, molecualr and structural formula of compounds, mainly for o_____ speices.

1) Empirical Formula

The formula which shows the simpest whole number ratio of the atoms or ions present.

 \rightarrow In fact, empirical formula of an organic sample (What is it? It is those compounds containing the

elements of _____, ____) is found by the combustion of the sample, i.e. complete combustion.

e.g. $(CH_2)_n =$ _____, where n must be an integer.

If n is = 4, ______ is the molecular formula of the compound.

2) Molecular Formula

The formula shows the actual number of each kind of atoms in o_____ molecule of the substance.

Exercise 2

Compound 2 has the following composition by mass:

C = 70.6% H = 5.9% O = 23.5%

i) Please find out the empirical formula of L.

(Hint : Draw the table to calculate the no. of moles of each atom \rightarrow simplest ratio)

ii) Given that its rel. molecular mass is around 136, what is its molecular formular?

 $(C_4H_4O, C_8H_8O_2)$

3) Structural Formual

The formula which shows how the constituent a _____ are joined up in one molecule of the substance. It is the most important one as it can enable us to find the exact structure of a sample. But it can be **hardly** found.

 \rightarrow As for the above example, C₄H₈ represents a lot of possible compounds, e.g.

 \rightarrow To draw the actual structure, we need to determine the s_____ formula.

4) <u>Ionic Formula</u>

The formula which shows the simplest whole number ratio of the ions present, and also the charges carried by them. It is used for i_____ compound **only**.

Assume that Magnesium Nitride Mg_3N_2 (a greenish yellow powder) is completely soluble in water. a) Draw the electron diagram of Mg_3N_2 . (show the outermost electrons only)

b) What is the molar mass of the Mg_3N_2 ?

***c) How many moles of Mg^{2+} ions and N^{3-} ions are there in 10g of Mg_3N_2 in 1mL water?

→ According to the ionic formula of Mg_3N_2 , the no. of moles of the Mg^{2+} and N^{3-} ions should _____ be the same. (100.9494 g/mol, cation= 0.297, anion= 0.198 mol)

Importance of A chemical equaiton

 $Fe_2O_3(s)$, 1000°C, 500 atm

 $N_2(g) + 3H_2(g) = 2NH_3(g)$

Consider the equation representing the Haber Process, i.e. the production of <u>a</u>.

In an equation, we have the information about the reactants , p______, the **reversibility** of a

reaction and the **conditions** required for the reaction e.g. t_____, p_____ and the

presence of catalyst.

(What is it? Positive Catalyst is the substance which can speed up the reaction by providing a reaction pathway with a l_____ activation energy.

 \rightarrow Noted that Ea is the minimum energy barrier for a r_____ to happen.)

Most importantly, we have the information about the **Stiochiometry**, i.e., the indication of the no.of species reacting. Studying the coefficients can help you deal with the **mole concept**...and the determination of "**limiting agent**".

Question : how many moles of hydrogen is required to form 2 moles of ammonia? _____.

Exercise 46.0 grams of C_2H_2 and an unknown supply of oxygen are used in combustion. To produce as much CO_2 as possible, how much grams of oxygen should be added to the reaction?**Hint** = 2 $C_2H_2(g) + 5 O_2(g) ---> 4 CO_2(g) + 2 H_2O(1)$ (18.5 grams)